Catégories
Actualités Emplois

Offre de Post-doctorat : Développement d’un système de gestion de l’énergie fondé sur la théorie de la commande prédictive destiné aux bâtiments publics

Contexte

Le projet IMPROVEMENT (Integration of combined cooling, heating and power microgrids in zero-energy public buildings under high power quality and continuity of service requirements) est lauréat du troisième appel à projets Interreg Sudoe (https://tinyurl.com/ya5vrtyp). Le projet est coordonné par le CNH2 (Centro Nacional del Hidrógeno), situé à Puertollano, en Espagne, et implique, entre autres laboratoires de recherche et partenaires institutionnels, le laboratoire PROMES-CNRS (une unité propre de recherche du CNRS conventionnée avec l’UPVD).

Les missions confiées à l’ingénieur-e de recherche portent sur le développement d’un système avancé de gestion de l’énergie (ou BEMS, pour building energy management system) destiné aux bâtiments publics faisant face à des charges critiques pour la gestion prédictive de l’énergie thermique et du confort thermique des usagers. Le BEMS sera fondé sur une structure de commande prédictive (ou structure MPC, pour model-based predictive control) hiérarchisée à deux niveaux. La structure MPC de niveau bas définira les consignes des systèmes de CVC (chauffage, ventilation et climatisation) et pilotera le confort thermique des usagers. Les prédictions de la consommation énergétique seront transmises à la structure MPC de niveau haut pour la gestion du système de stockage thermique, conformément aux besoins des usagers en matière de chauffage et de climatisation, et pour le stockage des surcharges du micro-réseau électrique, par la transformation de l’énergie électrique en énergie thermique. En retour, la structure MPC de niveau haut transmettra au micro-réseau sa prévision de consommation électrique. Deux bâtiments pilotes, l’un à Lisbonne au Portugal (laboratoire LNEG), l’autre à Puertollano en Espagne (laboratoire CNH2), permettront la mise en œuvre du système de gestion de l’énergie développé.

La mise en œuvre de la stratégie décrite ci-avant requiert des prévisions, à horizon de temps infra-journalier, de grandeurs (présence des usagers, ensoleillement, température extérieure, etc.) influant sur la dynamique du système. Des algorithmes pour la prévision de séries temporelles – les outils de l’apprentissage automatique/profond seront mis à profit – seront développés par l’ingénieur-e de recherche.

Objectif

L’objectif du projet est le développement d’outils pour la conversion de bâtiments publics faisant face à des charges critiques en bâtiments à très basse consommation énergétique par l’intégration de micro-réseaux pour la génération combinée de chaud, de froid et d’électricité. Ces micro-réseaux sont équipés de systèmes de stockage hybrides et devront contribuer à la continuité des services. Plus précisément, IMPROVEMENT vise à :

  • améliorer l’efficacité thermique des bâtiments publics par la production de chaud et de froid par voie solaire et l’intégration de solutions techniques actives et passives ;
  • améliorer la qualité et la fiabilité de l’alimentation électrique par le développement d’un système de gestion des micro-réseaux résilient aux pannes ;
  • maximiser la consommation d’énergie renouvelable par l’intégration d’un système avancé de gestion de l’énergie, exploitant les systèmes de stockage hybrides équipant les micro-réseaux.

Deux bâtiments pilotes, l’un à Lisbonne au Portugal (laboratoire LNEG), l’autre à Puertollano en Espagne (laboratoire CNH2), permettront la mise en œuvre du système avancé de gestion de l’énergie. Le premier bâtiment est équipé d’une pompe à chaleur géothermique et d’une pompe à chaleur classique ainsi que de systèmes de stockage hydrothermiques qui, par ailleurs, échangent de l’énergie thermique avec les systèmes de production et de consommation d’hydrogène du micro-réseau, le tout alimentant les systèmes de CVC (chauffage, ventilation et climatisation) et d’eau chaude sanitaire du bâtiment. Le deuxième bâtiment est équipé de collecteurs solaires thermiques, de collecteurs thermo-photovoltaïques (PVT), de pompes à chaleur et d’un système de stockage hydrothermique, le tout alimentant les systèmes de CVC et d’eau chaude sanitaire.

Compétences

  • Contrôle/commande avancé (commande prédictive)
  • Intelligence artificielle (apprentissage automatique/profond)
  • Modélisation et identification des systèmes
  • Optimisation mathématique
  • Energétique du bâtiment

Savoir-faire

  • Programmation scientifique (Matlab/Tomlab)
  • Développement d’algorithmes pour la gestion énergétique des bâtiments et du confort thermique
  • Développement d’algorithmes pour la prévision des séries temporelles

Savoir-être

  • Autonomie
  • Prise d’initiative
  • Esprit d’équipe

Contacts PROMES-CNRS

  • Stéphane Grieu, Professeur des Universités, PROMES-CNRS,
  • Julien Eynard, Maître de Conférences, PROMES-CNRS,
  • Stéphane Thil, Maître de Conférences, PROMES-CNRS,

Conditions de recrutement

  • Diplôme : doctorat en sciences de l’ingénieur
  • Contrat : ingénieur de recherche
  • Durée : 16 mois à temps plein
  • Prise de fonction au : 01/12/2021
  • Lieu de travail : PROMES-CNRS, rambla de la Thermodynamique, Tecnosud, 66100 Perpignan
  • Rémunération : environ 2200 € (net mensuel)

Catégories
Actualités Emplois Stages

Offre de Stage : Analyse d’une machine thermique multifonctionnelle (froid, électricité et stockage)

Niveau : Formation BAC+5 (Master ou Ingénieur)

Contexte

Ce stage s’inscrit dans des enjeux énergétiques importants et d’actualité : la valorisation de chaleurs basse température (telles que l’énorme gisement de rejets thermiques industriels, l’énergie solaire basse concentration…), la problématique du stockage pour gérer les fluctuations à la fois des sources et des demandes énergétiques, et la demande croissante en électricité et en froid.

Pour répondre à ces problématiques, le laboratoire a défini un procédé thermodynamique innovant intégrant une cogénération de froid et d’électricité associé à une fonction stockage d’énergie.

Ce procédé combine un procédé à sorption thermochimique), qui assure la production de froid et la fonction de stockage et un organe de détente pour la production d’électricité (fig. 1). Le procédé thermochimique, bien connu au laboratoire, permet de produire les effets endo ou exothermiques grâce à un changement d’état liquide/gaz dans une évaporateur/condenseur et une réaction chimique solide/gaz dans un réacteur thermochimique. L’organe de détente utilise les flux de gaz entre ces composants pour générer un travail mécanique.

Figure 1. Représentation schématique d’un procédé thermochimique hybride multifonctionnel incluant un organe de détente (expander)

L’originalité d’un tel procédé appelé ‘hybride’ se situe dans l’architectures du procédé global et dans les couplages entre composants, ces composants étant eux –mêmes relativement bien connus.

Les verrous scientifiques se situent ainsi dans la compréhension et le contrôle des interactions entre les composants (spécifiquement l’organe de détente et le réacteur), l’adéquation de leurs modes opératoires, et l’optimisation des performances du procédé hybride global.

Actuellement, les travaux du laboratoire ont permis d’analyser leurs performances thermodynamiques de plusieurs architectures de cycles hybrides en régime stationnaire.  Un modèle dynamique a été développé pour analyser le comportement de ce système au cours des cycles de stockage et de déstockage. Enfin, un prototype a été défini, et est en cours de montage, afin d’analyser expérimentalement ce concept de cycle hybride.

Pour approfondir ces travaux, il est maintenant indispensable de réaliser des expérimentations sur le prototype dans différentes conditions opératoires, de confronter notre modèle dynamique à cette expérimentation, d’analyser le fonctionnement et les performances de ces cycles hybrides et d’envisager des voies d’optimisation.

Le stage de master II proposé s’inscrit dans ce programme global, et sera plus particulièrement focalisé sur l’analyse et les performances de l’organe de détente.

Programme du stage :

  1. ce stage débutera classiquement par une phase d’apprentissage des acquis du laboratoire sur ces systèmes hybrides.
  2. Expérimentations : En étroite collaboration avec l’équipe du projet, le ou la stagiaire participera aux campagnes expérimentales, avec une attention particulière aux conditions de fonctionnement de l’organe de détente.
  3. Modélisation et simulation numérique : le ou la stagiaire se familiarisera avec l’outil de simulation dynamique existant. Sur la base des résultats expérimentaux, il ou elle analysera la validité du modèle, en particulier la partie relative à l’organe de détente, et identifiera les paramètres caractéristiques. Des modèles plus complets d’organes de détente disponibles dans la littérature seront testés. L‘objectif étant de déterminer un modèle d’organe de détente représentatif mais de complexité modérée pour l’intégrer dans le modèle global de cycle hybride.
  4. Voies d’optimisation : L’organe de détente (scroll) utilisé dans le prototype a été choisi sur des critères de disponibilité et de simplicité expérimentale. A partir des connaissances précédentes à la foi expérimentales et numériques l’objectif est de discuter des voies d’optimisations du cycle hybride (mode de contrôle, autres technologies d’organe de détente).

Profil du/de la candidat(e) : Niveau BAC+5 (Master ou Ingénieur). Le ou la candidat(e) devra avoir une solide formation en énergétique (thermodynamique appliquée, transferts). Un attrait à la fois pour les aspects numériques et expérimentaux est nécessaire. Une connaissance du langage de programmation Python sera appréciée.

Conditions du stage :

Localisation :  Laboratoire PROMES – Site de Perpignan.

Démarrage : Janvier/Février 2022, sous la gratification forfaitaire en vigueur (≈ 590 €/mois)

Candidature : Les lettres de candidature devront être accompagnées d’un CV et adressées à Maxime Perier-Muzet   et Nathalie Mazet 

Références sur les cycles hybrides

  • Wang L, Ziegler F, Roskilly A.P, Wang R, Wang Y, A resorption cycle for the cogeneration of electricity and refrigeration, Applied Energy 2013 ;106
  • Godefroy A, Perier-Muzet M, Neveu P, Mazet N. Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power, Energy Conversion and Management 2020;255
Catégories
Doctorats - Post-doctorats Non classé

Offre de thèse: Simulation et apprentissage d’écoulements turbulents fortement anisothermes

Mots-clés de la thèse : mécanique des fluides, méthodes numériques, écoulement turbulent anisotherme, simulation numérique directe, simulation des grandes échelles, apprentissage automatique, intelligence artificielle

Encadrement de la thèse
Adrien TOUTANT – 04 68 68 27 09 – – HDR obtenu en 2013
Françoise BATAILLE – 04 68 68 22 32 – – HDR obtenu en 2000
Lionel MATHELIN –
Onofrio SEMERARO –

Contexte
Le contexte de la thèse est le développement des centrales solaires à tour de prochaine génération. On se concentre sur le composant clé des centrales : le récepteur solaire à haute température et haut flux. Une des possibilités est d’utiliser au sein du récepteur solaire un mélange gaz pressurisé comme fluide de transfert. La maîtrise des écoulements turbulents fortement anisothermes est alors un verrou scientifique pour le développement de ces centrales solaires à tour. En effet, les couplages entre la turbulence et la thermique rendent la physique particulièrement complexe. Cette thèse vise à en améliorer la compréhension et la modélisation.

Objectifs
Les objectifs de ce projet de thèse sont les suivants (ils sont présentés par ordre chronologique) :

  1. Réalisation de simulations numériques directes d’écoulements turbulents fortement anisothermes
  2. Développement de modèles de type simulation des grandes échelles en utilisant les outils d’apprentissage automatique (deep learning)

Méthode
En simulation numérique directe (SND), la bonne prise en compte du couplage vitesse/température et la résolution de toutes les échelles de la turbulence nécessite des maillages extrêmement fins. Ces simulations sont donc limitées à des cas de calculs académiques avec des tailles modestes de domaine et des géométries simples. Pour réaliser des simulations se rapprochant davantage des applications, il est indispensable de réduire le coût des SND en introduisant des modèles sous-maille (cf. figure).
A notre connaissance, il existe peu de modèle pour les termes sous-maille spécifiques aux écoulements fortement anisothermes (Dupuy et al. 2019 ; David et al. 2021). Le travail de modélisation consiste donc à adapter les modèles existants pour le tenseur de Reynolds et à développer de nouveaux modèles pour les termes spécifiques. Pour ces derniers, nous proposons d’adapter les modèles structurels qui utilisent des méthodes de déconvolution comme le modèle gradient ou le modèle de similarité d’échelles.

Pour développer un modèle de type simulation des grandes échelles SGE pour les écoulements très fortement anisothermes, le doctorant constituera une base de données étendue de SND. A partir de cette base de données, des techniques d’apprentissage automatique (machine learning, deep learning) seront mises en œuvre pour déterminer un modèle mathématique décrivant l’effet des petites échelles (non résolues) sur les plus grandes. Plus précisément, différentes architectures de réseaux de neurones (réseaux convolutionnels, réseaux à graphes, etc.) et de fonctions objectifs seront évaluées pour inférer le meilleur modèle possible. Une attention particulière sera portée à la robustesse du modèle appris vis-à-vis de la résolution du maillage et du régime de l’écoulement. Les modèles développés devront permettre de calculer avec précision les échanges thermiques fluide/paroi.

Profil recherché
Le doctorant aura une bonne formation en mécanique des fluides et en simulation numérique. Des compétences en apprentissage automatique (machine learning), mathématiques appliquées et programmation (C++, python, pytorch) seront très appréciées.

Environnement
La thèse se déroulera principalement au laboratoire PROMES (Perpignan) et inclura quelques séjours au LISN (Saclay).

Références
David M., Toutant A., Bataille F., Investigation of Thermal Large-Eddy Simulation approaches in a highly turbulent channel flow submitted to strong asymmetric heating, Physics of Fluids, vol. 33(4), 045104, 2021.
Dupuy D., Toutant A., Bataille F., Study of the large-eddy simulation subgrid terms of a low Mach number anisothermal channel flow, International Journal of Thermal Sciences, vol. 135, p. 221-234, 2019.

Catégories
Actualités Emplois

Appel à candidature à un post-doctorat à PROMES

OFFRE POURVUE

Appel à candidature à un post-doctorat à PROMES

Le laboratoire PROMES est une Unité Propre de Recherche du CNRS rattachée à l’Institut des Sciences de l’Ingénierie et des Systèmes (INSIS) qui développe des recherches dans le domaine du solaire et, en particulier, du solaire à concentration. Il dispose d’installations solaires de recherche uniques au monde en termes de facteur de concentration et de puissance.
La mission de PROMES est de contribuer à la lutte contre le changement climatique en proposant des nouvelles solutions de conversion et d’utilisation de l’énergie solaire. Les domaines d’applications concernés sont : la production de chaleur, de froid, d’eau douce, d’électricité ou de combustibles renouvelables, ainsi que les matériaux associés. La problématique du stockage de l’énergie solaire est centrale dans ces applications.
  
Thèmes proposés
Les candidatures dans les domaines suivants seront examinées :
1.     Systèmes de conversion d’énergie solaire concentrée en vecteurs énergétiques
2.     Matériaux par et pour les hautes températures
3.     Stockage à haute température
Les sciences de base concernées sont nombreuses, on peut citer, la physique des nano-objets, les transferts par rayonnement (thermique), la dynamique des fluides en situation anisotherme, la thermochimie, les plasmas, la science des matériaux…
  
Candidature
Dans le but de développer des nouveaux projets de recherche dans les thèmes précédents, PROMES soutiendra des projets originaux de candidat.es à un post-doctorat de 12 mois (la durée peut être inférieure).
Les projets devront intégrer un volet de mise en œuvre des installations à concentration du site d’Odeillo-Font Romeu ou une étroite collaboration avec les expérimentateurs et expérimentatrices.
Les candidat.es seront sélectionné.es par le Conseil Scientifique du laboratoire en deux étapes, sur dossier puis sur audition.


  
Contact 
Françoise Bataille, Directrice du laboratoire PROMES
francoise.bataille_at_promes.cnrs.fr

Catégories
Actualités Emplois

Appel à candidature à un poste de Chercheur.e au CNRS – Section 10

Appel à candidature à un poste de Chercheur au CNRS – Section 10 –

Le laboratoire PROMES est une Unité Propre de Recherche du CNRS rattachée à l’Institut des Sciences de l’Ingénierie et des Systèmes (INSIS) qui développe des recherches dans le domaine du solaire et, en particulier, du solaire à concentration. Il dispose d’installations solaires de recherche uniques au monde en termes de facteur de concentration et de puissance.
La mission de PROMES est de contribuer à la lutte contre le changement climatique en proposant des nouvelles solutions de conversion et d’utilisation de l’énergie solaire. Les domaines d’applications concernés sont : la production de chaleur, de froid, d’eau douce, d’électricité ou de combustibles renouvelables, ainsi que les matériaux associés. La problématique du stockage de l’énergie solaire est centrale dans ces applications.
  
– Thèmes proposés
Les candidatures dans les domaines suivants seront examinées :
1.     Systèmes de conversion d’énergie solaire concentrée en vecteurs énergétiques
2.     Matériaux par et pour les hautes températures
3.     Stockage à haute température
Les sciences de base concernées sont nombreuses, on peut citer, la physique des nano-objets, les transferts par rayonnement (thermique), la dynamique des fluides en situation anisotherme, la thermochimie, les plasmas, la science des matériaux…
  
Candidature
Dans le but de développer de nouveaux projets de recherche dans les thèmes précédents, PROMES soutiendra des projets originaux issus de candidat.es motivé.es par les objectifs du laboratoire.
Les projets devront intégrer un volet de mise en œuvre des installations à concentration du site d’Odeillo-Font Romeu ou une étroite collaboration avec les expérimentateurs et expérimentatrices.
Les projets sélectionnés seront proposés pour candidater au concours organisé au plan national par le CNRS annuellement (dépôt des dossiers en début d’année).
 
Contact 
Françoise Bataille, Directrice du laboratoire PROMES
francoise.bataille_at_promes.cnrs.fr