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Alternative fuels for sustainable development

S Why ?? o
’ Global greenhouse gas emissions by sector s

This is shown for the year 2016 - global greenhouse gas emissions were 49.4 billion lonnes CO,eq.
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Alternative fuels for sustainable development

Why ?? When ??
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2019 was the second warmest year and the
last five years were the warmest on record

Temperature difference between 2019 and 1981-2010
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Air temperature at a height of two metres for 2019, shown relative to its 1981-2010
average. Source: ERAS. Credit: Copernicus Climate Change Service (C3S)/ECMWEF.
Copernicus Europe’s eyes on Earth: https://climate.copernicus.eu/




Alternative fuels for sustainable development

Why ?? When ?? How??
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Alternative fuels for sustainable development

Why ?? When ?? How?? What??
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Sustainable metal fuels through combustion/reduction cycles
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Sustainable metal fuels through combustion/reduction cycles

Production and Recycling Chain
combustion/reduction cycle

Metal oxides @ ) Metal fuels




Sustainable metal fuels through combustion/reduction cycles

Production and Recycling Chain External metal-fueled
combustion/reduction cycle CEITANE O
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Sustainable metal fuels through combustion/reduction cycles

Production and Recycling Chain External metal-fueled
combustion/reduction cycle CEITANE O

Combustion,
| Metal fuels INEE

Hot air

METAL
FUEL
- TANK
—
Emission-free
N Out
=5 -) |
Ai Stabilized \
r
Metal-air metal Two-phase products
— fuel flame (oxide and gas)
mixture
I.'\'
% METAL OXIDE
3 PRODUCT
. COLLECTOR

Laboureur et al., COFRET’18, Strasbourg, 2018, hal-01860128.
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Sustainable metal fuels through combustion/reduction cycles

Reduction \

Production and Recycling Chain
combustion/reduction cycle

Solar
Furnace
(Odeillo)
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Solar vacuum-assisted carbothermal reduction of oxides
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Solar vacuum-assisted carbothermal reduction of oxides

parabolic mirror
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Solar vacuum-assisted carbothermal reduction of oxides
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Solar vacuum-assisted carbothermal reduction of oxides

Sol@rmet reactor
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ANSYS

R15.0
Academic

0 0.100 {m) -1._. x
_U.()S{):I 8.018
ANSYS-CFX software Tetrahedral meshing
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Berro etal., J. Clean. Prod. 315 (2021) 128142.




Numerical simulations of the gas circulation in Sol@rmet reactor

ANSYS

R15.0
Academic
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ANSYS-CFX software

Monte-Carlo model to correlate the solar radiations on the pellet surface:
1.5 kW solar furnace, DNI of 1000 W-m-2, total radiative flux of 15000 kW-m-2

Tetrahedral meshing
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Numerical simulations of the gas circulation in Sol@rmet reactor

ANSYS Temperature ANSYS

Te it
emperature R15.0 Contour 1 A0
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Temperature distribution on the Sol@rmet reactor and the surface of the C/oxide pellet
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Numerical simulations of the gas circulation in Sol@rmet reactor
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One argon entry vs. double argon entry:
= * Swirl circulation
§ » Higher velocity in the exit tube (0.21 vs. 0.7 m-s)
%

—  Better purging of products = Better reduction yield
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Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts

ST
. . fixed C T ___ (reduction) Mg YIE|d
Carbon (pyrolysis conditions) content (%) max(K) (%) Pyrolysis at high temperature
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Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts

> Progressive increase of temperature
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Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts

= o
400 Progressive increase of temperature
ANSYS
L
= Solar experimental validation
of the simulation results
Mg yield: 52 21 68% using a double-
k argon entry

L

4 UNIVERSITE °




Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts

A Progressive increase of temperature Mechanical milling C/MgO powders
_— ANSYS » smaller particle size
o » higher C/MgO contact
‘ » Mg yield: 68 21 85%
ot
d/
= Solar experimental validation
of the simulation results
Mg yield: 52 21 68% using a double-
k argon entry
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W Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts
N -

y Progressive increase of temperature Catalysts (Fe, Ni, Fe-Ni) reduces the yield

- Mechanical milling C/MgO powders > reaction accelerated at the beginning

: 3 » carbon consumed rapidly
> Mg yield: 68 71 85% > loss of the C/MgO contact and MgO sintering
L.
d/
= Solar experimental validation

of the simulation results

Mg yield: 52 21 68% using a double-
argon entry
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Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts

uuuuuuuu
...........

ASe Mechanical milling C/MgO powders > reaction accelerated at the beginning
: » carbon consumed rapidly

> Mgyield: 68 71 85% > loss of the C/MgO contact and MgO sintering

Bentonite binder catalytic effect: Better C/MgO contact, prevents MgO sintering
- Mg yield: 85 21 96% (with 96% purity)

d/

= Solar experimental validation
of the simulation results

Mg yield: 52 21 68% using a double-

5 argon entry
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Magnesia reduction: Effect of gas circulation, mechanical milling,
reductant properties, bentonite binder and catalysts
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ASe Mechanical milling C/MgO powders > reaction accelerated at the beginning
: » carbon consumed rapidly

> Mgyield: 68 21 85% > loss of the C/MgO contact and MgO sintering

Bentonite binder catalytic effect: Better C/MgO contact, prevents MgO sintering
- Mg yield: 85 21 96% (with 96% purity)
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Solar experimental validation
of the simulation results

7 Mg yield: 52 21 68% using a double-
argon entry

| L
UNIVERSITE :
@ ’ Granulometry: agglomerates of sub-micron Mg particles and crystals,
. Dy, of 100 pm (40% are < 10 pm).




Alumina reduction: Effect of the reactor pressure on the formation of
Al-oxycarbides by-products

Main problematic

Formation of Al-oxycarbides by-products

Mechanical milling C/Al,O; powders
» Similar to MgO reduction

» Alyield improved by around 15%

Metal catalysts (Fe, Ni, Fe-Ni) and
bentonite binder

> no or adverse effect

» formation of by-products
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Alumina reduction: Effect of the reactor pressure on the formation of
Al-oxycarbides by-products

. . Effect of reactor pressure
Main problematic P

> At 840 Pa: 74% vyield (85% Al purit
Formation of Al-oxycarbides by-products 6 yield (85% Al purity)

» P\ to 285 Pa: prevention of Al,OC formation

- 77% Al yield with 91% product purity
(7% of Al,C; and 2% of Al,O, by-products)

> Similar to MgO reduction > At 190 Pa: low gas circulation = easily oxidation of Al powders
- low purity (54%) and yield (42%)

Mechanical milling C/Al,O; powders

» Alyield improved by around 15%

Metal catalysts (Fe, Ni, Fe-Ni) and
bentonite binder

> no or adverse effect

Z > formation of by-products

Z Granulometry: agglomerates of nano- and micro-sized Al particles,
PROMES ‘ @ : ‘ Dy, Of 3 um (50% are < 50 nm).
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Conclusions and perspectives

A Conclusions
*  Magnesia reduction: 96% yield of highly pure (96% purity) Mg micron-sized crystals and particles
*  Alumina reduction: 77% vyield of pure Al (91% purity) nano- and micro-sized particles
*  Sustainability: metal fuels recycling through solar vacuum-assisted carbothermal reduction of oxides

. Metal fuels: clean and sustainable substitutes for conventional fossil fuels
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v~ VIl Conclusions and perspectives

Conclusions

*  Magnesia reduction: 96% yield of highly pure (96% purity) Mg micron-sized crystals and particles

*  Alumina reduction: 77% vyield of pure Al (91% purity) nano- and micro-sized particles

*  Sustainability: metal fuels recycling through solar vacuum-assisted carbothermal reduction of oxides

. Metal fuels: clean and sustainable substitutes for conventional fossil fuels

Perspectives

*  Set-up: semi-continuous process for higher production

Combustion experiments: effectivity of combustion/reduction cycles

*  Economical study: applicability of using solar metal fuels in vehicles
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