

Scienc

Metal Solar Fuels: The Future of Transportation

Youssef Berro Marianne Balat-Pichelin 25/08/2021

Phone: +33 4 68 30 77 69

Journées Nationales sur l'Énergie Solaire (JNES 2021)

PROMES-CNRS, UPR 8521, 7 rue du four solaire, 66120 Odeillo, France youssef.berro@promes.cnrs.fr

I – Objective: Alternative fuels for sustainable development

II – Concept: Sustainable metal fuels through combustion/reduction cycles

III – Set-up: Solar vacuum-assisted carbothermal reduction of oxides

IV – Numerical simulation: gas circulation in Sol@rmet reactor

V – **Magnesia reduction:** Effect of gas circulation, mechanical milling, reductant properties, bentonite binder and catalysts

VI – Alumina reduction: Effect of the reactor pressure on the formation of Al-oxycarbides by-products

VII – Conclusions and perspectives

Alternative fuels for sustainable development

Why ??

OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licens

Licensed under CC-BY by the author Hannah Ritchie (2020).

Alternative fuels for sustainable development

Why ?? When ??

Source: Climate Watch, the World Resources Institute (2020). Ucensed under CC-BY by the author Hannah Ritchie (202

2019 was the second warmest year and the last five years were the warmest on record

Air temperature at a height of two metres for 2019, shown relative to its 1981–2010 average. Source: ERA5. Credit: Copernicus Climate Change Service (C3S)/ECMWF. Copernicus Europe's eyes on Earth: https://climate.copernicus.eu/

Alternative fuels for sustainable development

Why ?? When ?? How??

EIT RawMaterials circular economy: https://eitrawmaterials.eu/

Alternative fuels for sustainable development

Why ?? When ?? How?? What??

EIT RawMaterials circular economy: https://eitrawmaterials.eu/

Bergthorson et al., Appl. Energy 160 (2015) 368-382.

Production and Recycling Chain combustion/reduction cycle

4

IV Numerical simulations of the gas circulation in Sol@rmet reactor

ANSYS-CFX software

Tetrahedral meshing

PROMES

Berro et al., J. Clean. Prod. 315 (2021) 128142.

IV Numerical simulations of the gas circulation in Sol@rmet reactor

h/

PROMES

Tetrahedral meshing

Monte-Carlo model to correlate the solar radiations on the pellet surface: 1.5 kW solar furnace, DNI of 1000 W·m⁻², total radiative flux of 15000 kW·m⁻²

Berro et al., J. Clean. Prod. 315 (2021) 128142.

IV

PROMES

Numerical simulations of the gas circulation in Sol@rmet reactor

Temperature distribution on the Sol@rmet reactor and the surface of the C/oxide pellet

Berro et al., J. Clean. Prod. 315 (2021) 128142.

IV Numerical simulations of the gas circulation in Sol@rmet reactor

One argon entry vs. double argon entry:

• Swirl circulation

Chrs

- Higher velocity in the exit tube (0.21 vs. 0.7 m·s⁻¹)
- Better purging of products \rightarrow Better reduction yield

Test	Carbon (pyrolysis conditions)	fixed C content (%)	T _{max} (reduction) (K)	Mg yield (%)
A1	charcoal psyllium (rate = 2 K min ⁻¹ , 1083 K for 30 min)	85	2050	63.6
A2	charcoal psyllium (rate = 2 K min ⁻¹ , 783 K for 30 min)	78	1700	33.6
A3	charcoal psyllium (rate = 10 K min ⁻¹ , 1083 K for 30 min)	76	1560	26.0

 $\overline{\mathbf{V}}$

PROMES

Arrowroot starch

Cornstarch

Biomass source: cellulose and starch-based are preferable over sugar-based charcoals

Psyllium

Okara

Cellulose

Chaga mushroom

Progressive increase of temperature

Progressive increase of temperature

Solar experimental validation of the simulation results

Mg yield: 52 *⊅* 68% using a doubleargon entry

Progressive increase of temperature

Mechanical milling C/MgO powders

- ➤ smaller particle size
- higher C/MgO contact
- ➢ Mg yield: 68 ↗ 85%

Solar experimental validation of the simulation results

Mg yield: 52 ⊅ 68% using a doubleargon entry

Progressive increase of temperature

Mechanical milling C/MgO powders

Catalysts (Fe, Ni, Fe-Ni) reduces the yield

- reaction accelerated at the beginning
- carbon consumed rapidly
- Ioss of the C/MgO contact and MgO sintering

Solar experimental validation of the simulation results

Mg yield: 52 ⊅ 68% using a doubleargon entry

Progressive increase of temperature

Catalysts (Fe, Ni, Fe-Ni) reduces the yield

- reaction accelerated at the beginning
- carbon consumed rapidly
- Ioss of the C/MgO contact and MgO sintering

Bentonite binder catalytic effect: Better C/MgO contact, prevents MgO sintering

→ Mg yield: 85 7 96% (with 96% purity)

Solar experimental validation of the simulation results

Mg yield: 52 ⊅ 68% using a doubleargon entry

PROMES

Berro et al., J. Clean. Prod. 315 (2021) 128142.

Berro et al., Proceedings of MCM'21 (2021) mmme21.102.

Progressive increase of temperature

Catalysts (Fe, Ni, Fe-Ni) reduces the yield

- reaction accelerated at the beginning
- carbon consumed rapidly
- Ioss of the C/MgO contact and MgO sintering

Bentonite binder catalytic effect: Better C/MgO contact, prevents MgO sintering

→ Mg yield: 85 7 96% (with 96% purity)

Mg yield: 52 ↗ 68% using a doubleargon entry

Granulometry: agglomerates of sub-micron Mg particles and crystals, D_{90} of 100 μ m (40% are < 10 μ m).

Alumina reduction: Effect of the reactor pressure on the formation of Al-oxycarbides by-products

Main problematic

Formation of Al-oxycarbides by-products

Mechanical milling C/Al₂O₃ powders

- Similar to MgO reduction
- > Al yield improved by around 15%

Metal catalysts (Fe, Ni, Fe-Ni) and bentonite binder

- no or adverse effect
- formation of by-products

Alumina reduction: Effect of the reactor pressure on the formation of Al-oxycarbides by-products

Main problematic

Formation of Al-oxycarbides by-products

Mechanical milling C/Al₂O₃ powders

- Similar to MgO reduction
- Al yield improved by around 15%

Effect of reactor pressure

- At 840 Pa: 74% yield (85% Al purity)
- \blacktriangleright P \searrow to 285 Pa: prevention of Al₂OC formation

ightarrow 77% Al yield with 91% product purity

(7% of Al_4C_3 and 2% of Al_2O_3 by-products)

> At 190 Pa: low gas circulation \rightarrow easily oxidation of Al powders \rightarrow low purity (54%) and yield (42%)

Metal catalysts (Fe, Ni, Fe-Ni) and bentonite binder

- ➢ no or adverse effect
- formation of by-products

Granulometry: agglomerates of nano- and micro-sized Al particles, D_{90} of 3 μ m (50% are < 50 nm).

VII Conclusions and perspectives

Conclusions

- **Magnesia reduction:** 96% yield of highly pure (96% purity) Mg micron-sized crystals and particles
- Alumina reduction: 77% yield of pure Al (91% purity) nano- and micro-sized particles •
- Sustainability: metal fuels recycling through solar vacuum-assisted carbothermal reduction of oxides
- **Metal fuels:** clean and sustainable substitutes for conventional fossil fuels

VII Conclusions and perspectives

Conclusions

- **Magnesia reduction:** 96% yield of highly pure (96% purity) Mg micron-sized crystals and particles
- **Alumina reduction:** 77% yield of pure Al (91% purity) nano- and micro-sized particles •
- **Sustainability:** metal fuels recycling through solar vacuum-assisted carbothermal reduction of oxides
- **Metal fuels:** clean and sustainable substitutes for conventional fossil fuels

Perspectives

- **Set-up:** semi-continuous process for higher production
- **Combustion experiments:** effectivity of combustion/reduction cycles
- **Economical study:** applicability of using solar metal fuels in vehicles

THANKS FOR YOUR ATTENTION

www.promes.cnrs.fr www.cnrs.fr