Catégories
Actualités Emplois Stages

Offre de Stage : Simulation CFD et Optimisation d’un Réacteur Hybride de Gazéification Solaire

OFFRE POURVUE

Niveau : Formation BAC+5 (Master ou Ingénieur)

Lieu d’accueil : Laboratoire CNRS-PROMES, Odeillo Font-Romeu (66120)

Durée de travail : Temps plein (5 jours/semaine), sur une durée de 6 mois

Démarrage : A partir de Février / Mars 2022

Gratification :  ~ 590 € par mois

Contexte

Dans le domaine des énergies solaires thermiques, la notion de stockage est devenue centrale tant la ressource est variable dans le temps et dans l’espace. De nombreux travaux sont en cours sur le stockage direct de chaleur (thermocline, sels fondus…), mais le stockage sous forme chimique est également une voie prometteuse. Ainsi, il pourrait être avantageux d’exploiter l’énergie solaire pour alimenter des procédés fortement endothermiques comme celui de la gazéification. Cela permettrait de remplacer un mode de chauffage à haute empreinte carbone (combustion de matières premières), et de stocker de manière indirecte l’énergie solaire sous la forme d’un carburant à valeur ajoutée.

Au laboratoire PROMES d’Odeillo, nous étudions un réacteur solaire pour la gazéification de biomasse. Il s’agit d’oxyder des composés carbonés à haute température, afin de produire un gaz de synthèse composé principalement de H2 et de CO. Ce gaz peut alors être valorisé par stockage et combustion, ou bien servir de matière première dans l’industrie chimique pour la synthèse de biocarburants ou d’alcools. Cependant, un procédé solaire seul n’assurera qu’une production intermittente de gaz de synthèse. Nous étudions donc une solution d’hybridation, qui consiste à déclencher une combustion in-situ (en injectant de l’oxygène) pour compenser les baisses d’ensoleillement. Cette solution a été testée expérimentalement à plusieurs reprises*, et une thèse est en cours au laboratoire pour l’optimisation du fonctionnement hybride et la création d’outils de simulation et de contrôle.

* Muroyama et al. (2018), Boujjat et al. (2020), Hathaway et al. (2021), Curcio et al. (2021)

Objectifs

Le stage que nous proposons vise à utiliser un modèle CFD, sous Fluent, pour effectuer une étude paramétrique approfondie du réacteur hybride. Il s’agira de développer un code déjà existant et de l’exploiter pour réaliser une étude de sensibilité sur différents paramètres, comme les débits d’injection de la biomasse, de l’eau et de l’oxygène. Cette étude permettra à terme :

  • De valider des cinétiques chimiques et des régimes d’écoulement ;
  • D’optimiser le fonctionnement solaire et hybride du réacteur existant ;
  • D’alimenter un modèle réduit, exploitable pour extrapoler la technologie

Programme

  • Une étude bibliographique succincte permettra de se familiariser avec les mécanismes physiques et les cinétiques chimiques en jeu.
  • Dès les premières semaines du stage, des calculs seront lancés sur le serveur du laboratoire afin de prendre en main le code existant.
  • Une série de simulations sera dédiée à la validation du modèle, par confrontation avec les résultats expérimentaux à disposition.
  • L’influence des débits de réactifs sera caractérisée sous différents flux solaires, afin de valider une stratégie d’hybridation performante.
  • Le stagiaire pourra contribuer à l’élaboration d’un modèle dynamique simplifié sur la base des résultats obtenus, et à son extrapolation à échelle industrielle.

Ce travail fera l’objet d’une publication scientifique

Profil recherché

Etudiant de niveau BAC+5, en Master ou en cursus Ingénieur, avec une spécialité en génie des procédés. Le sujet requérant une bonne maîtrise du logiciel Fluent, le stagiaire devra avoir déjà mené à bien un projet de modélisation CFD dans le cadre de ses études.

Une connaissance élémentaire de l’environnement Linux est demandée.

Enfin, des compétences en langage Python seront appréciées.

Candidature

Merci de bien vouloir adresser une lettre de motivation accompagnée d’un CV à Axel Curcio –

Catégories
Actualités Emplois Stages

Offre de Stage : Écoulement bouillant eau-vapeur : expérimentation et modélisation multi-échelles dans un formalisme à deux fluides

Niveau : Formation BAC+5 (Master ou Ingénieur)

Démarrage : à partir de Février/Mars 2022

Introduction

Dans le contexte énergétique actuel, le développement et l’optimisation des procédés de conversion des énergies renouvelables suscite de plus en plus d’engouement. Les technologies solaires concentrés (CSP) s’inscrivent dans ces procédés propres de génération d’énergie. Cette technique consiste à concentrer les rayons du soleil à l’aide de miroir (héliostats) sur un récepteur, pour générer une élévation de température. La chaleur est transférée vers un échangeur de chaleur où de la vapeur est produite pour entraîner une turbine et générer de l’électricité. Une des technologies se développant actuellement consiste à générer directement de la vapeur (GDV) dans le récepteur [Dinsenmeyer 2015]. Ceci permet (i) de ne plus utiliser de fluide caloporteur (HTF, souvent onéreux), (ii) de réduire le nombre d’échangeurs de chaleur et (iii) de ne plus utiliser de matériaux «polluants» pour le stockage de la chaleur. La centrale eLLO opérée par SUNCNIM en Cerdagne repose sur cette technologie (voir eLLoTM SUNCNIM). Dans le récepteur, les transferts thermiques convectifs fluide/paroi entraînent l’évaporation du liquide et la création d’un écoulement diphasique dont la fraction volumique varie grandement en fonction de la position dans le tube récepteur. Ce stage s’inscrit dans une thématique de recherche ayant pour objectif la prédiction des régimes d’écoulement diphasique dans les récepteurs. Celle-ci est d’une importance capitale pour deux raisons : (i) prévoir la quantité de vapeur produite et donc la production de la centrale, (ii) prédire les contraintes thermomécaniques imposées aux matériaux du tube.

Figure 1 – Evaluation de la convergence en maillage. Haut : représentation instantannée de
l’interface pour différente résolution. Bas : Champ stationnaire moyenné de la fraction volumique
de vapeur dans une section proche de la sortie du domaine.

Objectifs

Du fait de l’émergence récente de ce type de centrale, les données expérimentales d’exploitation – indispensables à la validation de l’outil numérique – sont actuellement indisponibles dans la littérature. Les simulations réalisées à ce jour sont validées par confrontation à une étude expérimentale de la littérature, reprenant tous les ingrédients physiques de notre écoulement, d’ébullition de R141b dans un tube horizontal en serpentin [Yang et al 2008]. Ces données ont permis une première évaluation des modèles [Butaye et al 2021] mais ont également montré leurs limites. Le stagiaire devra donc dimensionner un banc expérimental permettant d’étudier les écoulements bouillants eau-vapeur dans une configuration en conduite horizontale. Le stagiaire aura à sa charge le suivi de projet sur ce volet conception.
En parallèle, il poursuivra le travail numérique déjà entrepris avec le logiciel de simulations NEPTUNE_CFD (voir Neptune_CFD TM EDF). Ce code numérique, utilisant la méthode des volumes finis, est une extension à n phases du modèle à deux fluides initialement développé pour les écoulements dispersés. Des travaux récents ont introduit de nouveaux modèles dans cet outil pour modéliser les écoulements gaz-liquides complexes (stratifiés, poches-bouchons, …).
Des travaux antérieurs ont montrés qu’une résolution à 40 mailles par diamètre permet d’atteindre une convergence en maillage (voir Fig. 1). Une étude paramétrique sur les différentes options de modélisation (prise en compte d’un raidissement d’interface, modèle de turbulence, paramètre du modèle d’ébullition,…) devra donc être menée à cette résolution sur la configuration de Yang. Un cas de calcul représentatif d’un récepteur solaire sera également mis en place.

Programme de recherche

  • Identification et analyse des mécanismes physiques mis en jeu à travers une étude bibliographique.
  • Dimensionnement et suivi de conception d’un banc expérimental permettant l’étude des écoulements bouillant eau-vapeur horizontaux.
  • Etude paramétrique des différentes options de modélisation sur la configuration de Yang pour une résolution de 40 mailles par diamètre.
  • Réalisation de simulations utilisant la démarche précédemment mise en place sur une configuration représentative d’un récepteur GDV.

Profil du candidat : Niveau BAC+5 (Master ou Ingénieur). Le candidat devra avoir une solide
formation en mécanique des fluides et/ou en énergétique. Un attrait pour le travail expérimental
et numérique est nécessaire. Une habileté avec linux et un langage de programmation (C/C++,
Python) sera appréciée.
Lieu de stage : Laboratoire PROMES – Site de Perpignan.
Rémunération : Gratification forfaitaire en vigueur ( 570 euros/mois)
Candidature : Les lettres de candidature devront être accompagnées d’un CV et adressées à
Samuel Mer : , Adrien Toutant :

Références

  • Butaye E., Ploquin M., Mer S., Toutant A., Bataille F., October 2021. Euler-Euler multi-scale simulations of internal turbulent boiling flow with conjugated transfer. Dispersed two-phase flow – SHF – Online Event.
  • Dinsemeyer R., 2015. Étude des écoulements avec changement de phase : application à l’évaporation directe dans les centrales solaires à concentration. Univ. Grenoble – PhD thesis
  • Mer S., Praud O., Neau H., Merigoux N., Magnaudet J., Roig V., 2018. The emptying of a bottle as a test case for assessing interfacial momentum exchange models for Euler-Euler simulations of multi-scale gas-liquid flows. Int. J. Multiph. Flow 106.
  • Yang Z., Peng X.F., Ye P., 2008. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int. J. Heat Mass Transf. 51.
Catégories
Actualités Emplois Stages

Offre de Stage : Recyclage et purification de métaux et éléments critiques par énergie solaire concentrée

OFFRE POURVUE

Niveau : Master 2 ou ou équivalent

Lieu : PROMES Odeillo

Encadrants : Gilles Flamant, Emmanuel Guillot

Gratification : ~600€/mois

Présentation du sujet :

Le solaire concentration permet d’obtenir des températures comprises entre 500 et 2500°C, domaine parfaitement adapté à la synthèse de matériaux. Cette dernière application a été largement explorée depuis de nombreuses années en particulier pour l’obtention de nanomatériaux tels que ZrO2, Al2O3, fullerènes, nanotubes de carbone, etc [1,2]. Peu de travaux concernent la métallurgie et la purification de matériaux. Des essais de validation de concept ont été réalisés dans le but de purifier le silicium mais n’ont pas été poursuivis [3].

Pourtant le recyclage et la purification des matériaux constituent une niche potentielle d’application du solaire à concentration (d’ailleurs identifiée par Félix Trombe il y a des décennies) que ce stage se propose d’explorer.

Le stage sera structuré selon les phases suivantes :

  • Etude bibliographique sur les procédés de recyclage et identification des éléments présentant le potentiel le plus grand.
  • Essais préliminaires avec des matériaux modèles.
  • Dimensionnement d’une installation solaire.

Bibliographie

[1] C. Monty, “Nanopowders prepared by Solar Physical Vapor Deposition (SPVD),” Journal of New Technology and Materials, vol. 1, pp. 8–23, 2015

[2] G. Flamant, D. Luxembourg, J. Robert, and D. Laplaze, “Optimizing fullerene synthesis in a 50 kW solar reactor,” Solar Energy, vol. 77, no. 1, pp. 73–80, 2004

[3] Flamant G., Kurtcuoglu V., Murray J., Steinfeld A. Solar purification of metallurgical grade silicon. Solar Energy Materials and Solar Cells, (2006), 90, pp. 2099-2106

Contact :

Catégories
Actualités Emplois Stages

Offre de Stage : Etude expérimentale d’un concept de récepteur solaire multitubulaire à particules fluidisées

OFFRE POURVUE

Niveau : Master 2 ou Ecole d’ingénieurs

Lieu : PROMES Odeillo

Encadrants : Gilles Flamant, Samuel Mer, Adrien Toutant

Gratification : ~600€/mois

Présentation du sujet :

Dans le contexte énergétique actuel, le développement et l’optimisation des procédés de conversion des énergies renouvelables suscite de plus en plus d’attention. Les technologies solaires concentrés (CSP) s’inscrivent dans ces procédés propres de génération d’énergie. Cette technique consiste à concentrer les rayons du soleil à l’aide de miroirs (héliostats) sur un récepteur pour produire de la chaleur. Celle-ci est transférée par un fluide caloporteur vers un échangeur de chaleur qui transmet l’énergie à un fluide de travail couplé à un cycle thermodynamique transformant la chaleur en électricité. Le rendement de conversion du cycle augmente avec la température de la source chaude. Actuellement, les sels fondus utilisés comme fluide de transfert offrent une température de source chaude de 550°C et un rendement de conversion de 42%.

Dans ce contexte, le laboratoire PROMES développe des recherches visant à augmenter ce rendement de conversion de 42 à 50 % via l’utilisation de cycles combinés, associant une turbine à gaz avec une turbine à vapeur ou de cycles supercritiques. Le cycle amont nécessite une température de source chaude de 700 à 800°C environ ne pouvant être atteinte avec les fluides caloporteurs actuels. La solution envisagée pour atteindre ces températures est d’utiliser comme fluide caloporteur des particules fluidisées par de l’air. La faisabilité de cette technique, qui offre également une solution pour le stockage thermique massif de l’énergie, a déjà été démontrée et plusieurs projets ont permis de mettre en place une base de données expérimentales concernant les écoulements de lits fluidisés tant en conditions de température ambiante que sous irradiation solaire concentrée.

En particulier, des essais à grande échelle (40 tubes soumis au rayonnement solaire concentré) ont révélé l’existence de passages préférentiels des particules dans certains tubes qui pourraient être liés à des variations de la vitesse du gaz dues à des écarts de température. Le but du stage est de valider cette hypothèse à l’aide d’expérimentations à l’échelle laboratoire et de proposer des solutions pour éviter que le système évolue vers l’arrêt de la circulation du solide dans certains tubes et donc à leur surchauffe. Il s’agit donc d’étudier comment une perturbation imposée sur un tube se propage aux tubes adjacents.

La maquette qui sera utilisée a été construite au laboratoire PROMES (Grand Four Solaire d’Odeillo) afin d’étudier la structure des écoulements de particules fluidisées dans des tubes à forts ratios hauteur/diamètre, à température ambiante dans un premier temps. Les particules sont fluidisées dans un caisson, appelé « dispenser » qui est mis sous pression grâce à une vanne de régulation. Dans ce caisson sont immergés un ou plusieurs tubes de 3m68 de longueur, ayant chacun une injection d’air secondaire (aération) afin de faire varier la vitesse de l’air au sein des tubes et ainsi changer le régime de fluidisation et la fraction volumique des particules. La régulation du débit de particules en sortie d’un tube est réalisée grâce à la pression imposée dans le dispenser et au débit d’aération. La compréhension de la physique des écoulements dans un tube est maintenant bien acquise mais il est désormais nécessaire de comprendre le comportement du système avec 3 tubes dont l’un est soumis à une variation de débit d’aération.

Plan 3D (gauche) et schéma du principe de fonctionnement (droite) du banc expérimental

L’étudiant.e devra travailler sur les points suivants :
           

  • Etude bibliographique sur les systèmes multitubulaires,
  • Montage et instrumentation du banc expérimental avec trois tubes,
  • Réalisation d’expériences sur le banc expérimental : variation des débits de particules suite à une perturbation de la vitesse d’aération imposée au tube central.
  • Exploitation et interprétation des résultats.

Ce stage s’inscrit dans les travaux de thèse de Ronny Gueguen et de Guillaume Sahuquet.

Contact :

Catégories
Actualités Emplois Stages

Offre de Stage : Analyse d’une machine thermique multifonctionnelle (froid, électricité et stockage)

Niveau : Formation BAC+5 (Master ou Ingénieur)

Contexte

Ce stage s’inscrit dans des enjeux énergétiques importants et d’actualité : la valorisation de chaleurs basse température (telles que l’énorme gisement de rejets thermiques industriels, l’énergie solaire basse concentration…), la problématique du stockage pour gérer les fluctuations à la fois des sources et des demandes énergétiques, et la demande croissante en électricité et en froid.

Pour répondre à ces problématiques, le laboratoire a défini un procédé thermodynamique innovant intégrant une cogénération de froid et d’électricité associé à une fonction stockage d’énergie.

Ce procédé combine un procédé à sorption thermochimique), qui assure la production de froid et la fonction de stockage et un organe de détente pour la production d’électricité (fig. 1). Le procédé thermochimique, bien connu au laboratoire, permet de produire les effets endo ou exothermiques grâce à un changement d’état liquide/gaz dans une évaporateur/condenseur et une réaction chimique solide/gaz dans un réacteur thermochimique. L’organe de détente utilise les flux de gaz entre ces composants pour générer un travail mécanique.

Figure 1. Représentation schématique d’un procédé thermochimique hybride multifonctionnel incluant un organe de détente (expander)

L’originalité d’un tel procédé appelé ‘hybride’ se situe dans l’architectures du procédé global et dans les couplages entre composants, ces composants étant eux –mêmes relativement bien connus.

Les verrous scientifiques se situent ainsi dans la compréhension et le contrôle des interactions entre les composants (spécifiquement l’organe de détente et le réacteur), l’adéquation de leurs modes opératoires, et l’optimisation des performances du procédé hybride global.

Actuellement, les travaux du laboratoire ont permis d’analyser leurs performances thermodynamiques de plusieurs architectures de cycles hybrides en régime stationnaire.  Un modèle dynamique a été développé pour analyser le comportement de ce système au cours des cycles de stockage et de déstockage. Enfin, un prototype a été défini, et est en cours de montage, afin d’analyser expérimentalement ce concept de cycle hybride.

Pour approfondir ces travaux, il est maintenant indispensable de réaliser des expérimentations sur le prototype dans différentes conditions opératoires, de confronter notre modèle dynamique à cette expérimentation, d’analyser le fonctionnement et les performances de ces cycles hybrides et d’envisager des voies d’optimisation.

Le stage de master II proposé s’inscrit dans ce programme global, et sera plus particulièrement focalisé sur l’analyse et les performances de l’organe de détente.

Programme du stage :

  1. ce stage débutera classiquement par une phase d’apprentissage des acquis du laboratoire sur ces systèmes hybrides.
  2. Expérimentations : En étroite collaboration avec l’équipe du projet, le ou la stagiaire participera aux campagnes expérimentales, avec une attention particulière aux conditions de fonctionnement de l’organe de détente.
  3. Modélisation et simulation numérique : le ou la stagiaire se familiarisera avec l’outil de simulation dynamique existant. Sur la base des résultats expérimentaux, il ou elle analysera la validité du modèle, en particulier la partie relative à l’organe de détente, et identifiera les paramètres caractéristiques. Des modèles plus complets d’organes de détente disponibles dans la littérature seront testés. L‘objectif étant de déterminer un modèle d’organe de détente représentatif mais de complexité modérée pour l’intégrer dans le modèle global de cycle hybride.
  4. Voies d’optimisation : L’organe de détente (scroll) utilisé dans le prototype a été choisi sur des critères de disponibilité et de simplicité expérimentale. A partir des connaissances précédentes à la foi expérimentales et numériques l’objectif est de discuter des voies d’optimisations du cycle hybride (mode de contrôle, autres technologies d’organe de détente).

Profil du/de la candidat(e) : Niveau BAC+5 (Master ou Ingénieur). Le ou la candidat(e) devra avoir une solide formation en énergétique (thermodynamique appliquée, transferts). Un attrait à la fois pour les aspects numériques et expérimentaux est nécessaire. Une connaissance du langage de programmation Python sera appréciée.

Conditions du stage :

Localisation :  Laboratoire PROMES – Site de Perpignan.

Démarrage : Janvier/Février 2022, sous la gratification forfaitaire en vigueur (≈ 590 €/mois)

Candidature : Les lettres de candidature devront être accompagnées d’un CV et adressées à Maxime Perier-Muzet   et Nathalie Mazet 

Références sur les cycles hybrides

  • Wang L, Ziegler F, Roskilly A.P, Wang R, Wang Y, A resorption cycle for the cogeneration of electricity and refrigeration, Applied Energy 2013 ;106
  • Godefroy A, Perier-Muzet M, Neveu P, Mazet N. Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power, Energy Conversion and Management 2020;255