Catégories
Actualités Emplois

Proposition de Post-Doctorat : Modélisation Euler-euler d’un récepteur solaire à génération directe de vapeur

OFFRE POURVUE

Démarrage au plus tard à l’automne 2022 pour une durée de 1 an.

Introduction :

Dans le contexte énergétique actuel, le développement et l’optimisation des procédés de conversion des énergies renouvelables suscite de plus en plus d’engouement. Les technologies solaires concentrés (CSP) s’inscrivent dans ces procédés propres de génération d’énergie. Cette technique consiste à concentrer les rayons du soleil à l’aide de miroir (héliostats) sur un récepteur, pour générer une élévation de température. La chaleur est transférée vers un échangeur de chaleur où de la vapeur est produite pour entraîner une turbine et générer de l’électricité. Une des technologies se développant actuellement consiste à générer directement
la vapeur dans le récepteur (GDV) [Dinsenmeyer 2015]. Ceci permet (i) de ne plus utiliser de fluide caloporteur (HTF, souvent onéreux), (ii) de réduire le nombre d’échangeurs de chaleur et (iii) de ne plus utiliser de matériaux «polluants» pour le stockage de la chaleur. La centrale eLLO opérée par SUNCNIM en Cerdagne repose sur cette technologie (voir eLLoTM SUNCNIM). Dans le récepteur, les transferts thermiques convectifs fluide/paroi entraînent l’évaporation du liquide et la création d’un écoulement diphasique dont la fraction volumique varie grandement en fonction de la position dans le tube récepteur. Ce post-doctorat s’inscrit dans une thématique de recherche ayant pour objectif la prédiction des régimes d’écoulement diphasique dans ces récepteurs. Celle-ci est d’une importance capitale pour deux raisons : (i) prévoir la quantité de vapeur produite et donc la production de la centrale, (ii) prédire les contraintes thermomécaniques imposées aux matériaux du tube.

Figure 1 – Evaluation de la convergence en maillage. Haut : représentation instantanée de
l’interface pour différente résolution. Bas : Champ stationnaire moyenné de la fraction volumique
de vapeur dans une section proche de la sortie du domaine.

Objectifs :

Du fait de l’émergence récente de ce type de centrale, les données expérimentales d’exploitation – indispensables à la validation de l’outil numérique – sont actuellement indisponibles dans la littérature. Les simulations réalisées à ce jour ont validées par confrontation à une étude expérimentale de la littérature, reprenant tous les ingrédients physiques de notre écoulement, d’ébullition de R141b dans un tube horizontal en serpentin [Yang et al 2008]. Ces données ont permis une première évaluation prometteuse de notre approche sur cette configuration simplifiée [Butaye et al 2021]. Celle-ci tire profit des outils développés par l’industrie du nucléaire et notamment le logiciel de simulations NEPTUNE_CFD (voir Neptune_CFD TM EDF). Ce code numérique, utilisant la méthode des volumes finis, est une extension à n phases du modèle à deux fluides initialement développé pour les écoulements dispersés. Des travaux récents ont introduit de nouveaux modèles dans cet outil pour modéliser les écoulements gaz-liquides complexes (stratifiés, poches-bouchons, …). La conduction thermique dans la parois du solide est prise en compte via le logiciel SYRTHES. Des travaux antérieurs ont montrés qu’une résolution à 40 mailles par diamètre permet d’atteindre une convergence en maillage (voir Fig. 1) pour le cas de Yang. Le/la personne recruté.e aura donc pour objectif de faire évoluer le cas de calcul mis en place pour être pleinement représentatif d’un module élémentaire constituant le récepteur solaire mis en oeuvre sur la centrale eLLo. Ce module élémentaire reprend la géométrie du démonstrateur que SUNCNIM a réalisé et opéré à La Seyne-sur-Mer. Des données expérimentales, issue de ce démonstrateur, permettront une évaluation de la démarche. Un paramètre clef de ces simulations réside dans l’estimation du flux incident – résultant de la concentration solaire – sur la paroi du récepteur et représentant la condition au limite de nos calculs. Les travaux de E. Montanet, actuellement en thèse CIFRE SUNCNIM/PROMES sur la modélisation macroscopique de la centrale de Llo, permettront d’alimenter ce volet du travail.

Programme de recherche :

  • Identification et analyse des mécanismes physiques mis en jeu à travers une étude bibliographique
  • Mise en place d’un cas de calcul représentatif d’un récepteur solaire GDV
  • Évaluation du flux thermique incident sur le récepteur
  • Étude des régimes d’écoulement dans le récepteur et des contraintes thermomécaniques associées dans le solide

Profil du candidat :

Nous recherchons des candidat.e.s ayant effectué un doctorat en mécanique des fluides avec une expertise sur la mise en oeuvre de simulations numériques diphasiques. Une
connaissance préalable de NEPTUNE_CFD serait appréciée mais n’est pas nécessaire.

Lieu de stage : Laboratoire PROMES – Site de Perpignan.
Rémunération : environ 2000 €/mois indexé sur l’expérience du/de la candidat.e
Candidature : Les lettres de candidature devront être accompagnées d’un CV et adressées à
Samuel Mer : , Adrien Toutant :

Références :

  • Butaye E., Mer S., Toutant A. – Euler-Euler multiscale simulations of internal boiling flow with conjugated heat transfer -submitted
  • Dinsemeyer R., 2015. Étude des écoulements avec changement de phase : application à l’évaporation directe dans les centrales solaires à concentration. Univ. Grenoble – PhD thesis
  • Mer S., Praud O., Neau H., Merigoux N., Magnaudet J., Roig V., 2018. The emptying of a bottle as a test case for assessing interfacial momentum exchange models for Euler-Euler simulations of multi-scale gas-liquid flows. Int. J. Multiph. Flow 106.
  • Yang Z., Peng X.F., Ye P., 2008. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int. J. Heat Mass Transf. 51.